Wiskunde Archives - Pagina 2 van 3 - Ezelsbruggetje Spring naar content

Alle Ezelsbruggetjes

Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.

pi uitrekenen

may i have a large container of coffee beans
may 3
i 1
have 4
a 1
large 5
container 9
of 2
coffee 6
beans 5

3,14159265

Door joost

Volgorde van bewerkingen

Het Mannetje Won Van De Oude Aap

Het -> haakjes

Mannetje-> machten
Won-> worteltrekking

Van-> vermenigvuldig
De-> delen

Oude-> optellen
Aap-> aftrekken

Door Ilisa

Bereik en domein

Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as

Door Dima

Het verschil tussen de omtrek en de oppervlakte

Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP

Omtrek = omheen lopen
Oppervlakte = op lopen

Door Jade

Rekenvolgorde HMWVDOA

HMWVDOA = Hare Majesteit Wenst Vandaag De Open Auto
1. Haakjes
2. Machtsverheffen
3. Worteltrekken
4. Vermenigvuldigen
5. Delen
6. Optellen
7. Aftrekken

Door Gerard

Het verschil tussen < en >

Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje

Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!

Door Anoniem

De verschillende vormen van een meter

Deze kun je onthouden met de zin 
Kan Het Dametje Met De CM Meten

K m
H m
M
D m
CM
M m

Door Esmee

Bytes

Kabouters Met Grote Tenen

(kabouters) Kilo byte
(met) Mega byte
(grote) Giga byte
(tenen) Tera byte

Door jonathan

Binaire talstelsel

In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.

Door Jesse

Rekenkundige bewerkingen

Hoe Moeten We Van Die Onvoldoendes Afkomen?

H= Haakjes
M= Machtsverheffen
W= Worteltrekken
V= Vermenigvuldigen
D= Delen
O= Optellen
A= Aftrekken

Door Anoniem

maaltafel 9

9×1=9
9×2=18
9×3=27
9×4=36
9×5=45
9×6=54
9×7=63
9×8=72
9×9=81
9×10=90

Dus als je goed kijkt komen er telkens bij de tientallen een bij, en bij de eenheden gaat er telkens een af.

Door Nore

De komma

Om te onthouden wat er met de komma gebeurt bij vermenigvuldigen en delen, kun je denken aan
R = R en L = L

KeeR = Komma naar Rechts
DeLen = Komma naar Links

Door Wladimir

Wiskundige vergelijking (x,y)

Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.

Door Jordy

SCHERP OF STOMP GRADEN

Scherp= de buitenste en de scherpste strakste lijn

Stomp=de binnenste de ronde lijn.

Door Anna

Eenheden

Kale Harry Danst Met De Chinezen Mee

Kilometer
Hectameter
Decameter
Meter
Decimeter
Centimeter
Milimeter

Door Anoniem

Logaritmen en kwadraten

Welk getalletje uit een kwadraat zet je waar in het logaritme??

A^b=C

De uitkomst van het kwadraat moet altijd in de Log komen te staan.

Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)

Zo krijg je:
A^b=C -> ^ALog(C)=B

Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡

Door Sandra

Het verschil tussen modus en mediaan

Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.

Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal

Door Onno

Grootheden

Om het verschil te onthouden tussen de grootheden van getallen; van laag naar hoog, kun je denken aan
Mijn Bil Trilt (2x)

Miljoen = 1.000.000

Miljard = 1.000.000.000

Biljoen = 1.000.000.000.000

Biljard = 1.000.000.000.000.000

Triljoen = 1.000.000.000.000.000.000
Triljard = 1.000.000.000.000.000.000.000

Door Martijn

Toa, Sos, Cas

Toa, Sos. Cas

Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine

Door rosa

Romeinse cijfers

Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:

Ik verving Xaviers lekkere citroenen door meloenen:

I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000

Door Thomas

Omrekenen

Om te onthouden dat 1 kilo = 2 pond = 10 ons, kun je het volgende doen

Breng je handen samen (1 kilo), maak nu twee vuisten (2 pond), laat al jouw vingers zien (10 ons)

Door Mathilda

Assenstelsel

Wanneer je vergeten bent of je eerst de verticale of eerst de horizontale lijn moet bekijken, kun je hieraan denken.

Eerst lopen en dan met de lift. Je bekijkt eerst de horizontale lijn en daarna de verticale lijn.

Door Anoniem

Cirkel: omtrek of oppervlakte?

De omtrek is 2 x pi x r
De oppervlakte is pi x r²

Als er 1 r in voor komt, is het dus in meters en dus lengte. Als er r² in voor komt, is het vierkante meters, dus oppervlakte!

Door Rob

Diameter en straal

Het verschil tussen een diameter en een straal is soms lastig te onthouden.  Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.

Door Anoniem

Het verschil tussen convex en concaaf

Om dit verschil te onthouden, kun je denken aan het Franse ‘la cave’, wat kelder betekent. Een kelder is hol

Concaaf = hol
Convex = bol

Door Dries

afgeleide van een breuk

als je de afgeleide van een breuk neemt gebruik dan:

NAT-TAN
————— (gedeelddoorstreep)

NAT = Noemer x Afgeleide Teller
TAN = Teller x Afgeleide Noemer
N² = Noemer²

Door Ramy

Metriek stelsel

Krijgt Hij Dan Maar Drie Cakejes Mee?
K=Kilometer
H=Hectometer
D=Decameter
M=Meter
D=Decimeter
C=Centimeter
M=Millimeter

naast meter werkt het ook voor bijvoorbeeld liters

Door Lenno
Home
Alle items
Uploaden