Wiskunde Archives - Pagina 2 van 3 - Ezelsbruggetje Spring naar content

Alle Ezelsbruggetjes

Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.

SCHERP OF STOMP GRADEN

Scherp= de buitenste en de scherpste strakste lijn

Stomp=de binnenste de ronde lijn.

Door Anna

Het verschil tussen < en >

Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje

Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!

Door Anoniem

Bytes

Kabouters Met Grote Tenen

(kabouters) Kilo byte
(met) Mega byte
(grote) Giga byte
(tenen) Tera byte

Door jonathan

Costa Rica!

Weet je nou nooit in de eenheidscirkel of de cosinus nou op de X-as ligt of op de Y-as? Nu vergeet je het nooit meer:

COSta Rica, zand, zee, horizon, dus die ligt op de X-as.

Sinus ligt dan op de Y natuurlijk 😎

Door Binc

Gradenhoeken

Een klok is rond en is 360 graden.
Ieder cijfer X 30 is het aantal graden dat hiermee correspondeert.

Voorbeeld: 3X90=45 graden

Door Falko

Factoren van 5 vermenigvuldigen

Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5

Bijvoorbeeld;
75×75 = 5625 –>  70×80= 5600 + 5×5=25 –> 5625

Door Anne Heleen

delen door 6

Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.

voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9

163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.

Door some

assenstelsel

wanneer je vergeten bent of je eerst de y as of de x as moet doen ga je gewoon het alfabet af! eerst de x dan de y!

a b c d e f g h i j k l m n o p q r s t u v w x y z
zie je!

Door Anoniem

Metriek stelsel

Km ~ kijk
Hm ~ hoe
Dm ~ dat
M ~ meisje
Dm ~ die
Cm ~ cirkel
Mm ~ maakt

Kijk hoe dat meisje die cirkel maakt!

Door Paula

Binaire talstelsel

In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.

Door Jesse

Km² Km³

Bij km² dan moet er 2 nullen bij en bij km³ 3 nullen.

Door Anoniem

X en Y as

Y–> is lang (verticaal)
X–> is breed (horizontaal)

zo kan je onthouden welke lijn wat is in het assenstelsel

Door Liv

Cijfers van pi

De precieze cijfers van pi kan je onthouden met de zin ‘Yes I want a pizza, yesterday we wanted pizza, yes pizza!
De hoeveelheid letters per woord staan voor een getal van pi. En het verhaal gaat nog over pizza ook!
Pi is dus: 3,1415926535

Door Henk

Het verschil tussen modus en mediaan

Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.

Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal

Door Onno

Wiskundige vergelijking (x,y)

Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.

Door Jordy

Eenheden

Kale Harry Danst Met De Chinezen Mee

Kilometer
Hectameter
Decameter
Meter
Decimeter
Centimeter
Milimeter

Door Anoniem

Toa, Sos, Cas

Toa, Sos. Cas

Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine

Door rosa

Goniometrie

Cosinus –> Cas : aanliggend / schuin
Sinus –> Sos: overstaand/ schuin
Tangens –> Toa: overstaand/aanliggend

Door andrea

Metriek stelsel

Krijgt Hij Dan Maar Drie Cakejes Mee?
K=Kilometer
H=Hectometer
D=Decameter
M=Meter
D=Decimeter
C=Centimeter
M=Millimeter

naast meter werkt het ook voor bijvoorbeeld liters

Door Lenno

Teller en Noemer

Als je moeite hebt met de quotientfunctie en dan welke ook alweer de noemer was en welke de teller:
de teller t(x) staat bovenaan, de Top dus t(x) Top
en zo volgt dat de noemer n(x) de onderste is.

Door Fenne

Het verschil tussen de teller en de noemer

Om te onthouden waar de teller en de noemer komen in een breuk, kun je denken aan T = T

Teller = Top

Door Maartje

delen door 0

delen door 0 is flauwekul

Door Astrid

Volgorde van berekeningen

Hoe Komen Wij Van Die Onvoldoendes Af?

Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken

Door Rianne

Het verschil tussen suppelementair en complementair

Om te onthouden hoeveel graden je draait bij supplementair en complementair, kun je denken aan de hoeveelheid P’s in het woord

SuPPlementair –> 2 p’s –> 180 graden draaien
ComPlementair –> 1 p –> 90 graden draaien

Door Hilke

De eigenschappen van transformaties

Deze eigenschappen kun je onthouden met het acroniem AHOE

A anpassen

H oekgrootte

O mega

E enheid

Door emma

Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)

SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)

SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.

Door Rens

De vlakken van een vierkant

Deze kun je onthouden met ROBijnZoekers

R ibbe
O ndervlak
B ovenlak
Z ijvlak

Door michiel

Diameter en straal

Het verschil tussen een diameter en een straal is soms lastig te onthouden.  Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.

Door Anoniem

Groter dan(<) en kleiner dan(>)

< heb je een grote opening en dat is groter dan > heb je een puntje dan is het kleiner dan

Door Ryan
Home
Alle items
Uploaden