Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
De komma
Om te onthouden wat er met de komma gebeurt bij vermenigvuldigen en delen, kun je denken aan
R = R en L = L
KeeR = Komma naar Rechts
DeLen = Komma naar Links
Cijfers van pi
De precieze cijfers van pi kan je onthouden met de zin ‘Yes I want a pizza, yesterday we wanted pizza, yes pizza!
De hoeveelheid letters per woord staan voor een getal van pi. En het verhaal gaat nog over pizza ook!
Pi is dus: 3,1415926535
Logaritmen en kwadraten
Welk getalletje uit een kwadraat zet je waar in het logaritme??
A^b=C
De uitkomst van het kwadraat moet altijd in de Log komen te staan.
Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)
Zo krijg je:
A^b=C -> ^ALog(C)=B
Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡
Rekenvolgorde HMWVDOA
HMWVDOA = Hare Majesteit Wenst Vandaag De Open Auto
1. Haakjes
2. Machtsverheffen
3. Worteltrekken
4. Vermenigvuldigen
5. Delen
6. Optellen
7. Aftrekken
Binaire talstelsel
In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.
Tafel van 9
9 x 1 = 0 9
9 x 2 = 1 8
9 x 3 = 2 7
9 x 4 = 3 6
9 x 5 = 4 5
9 x 6 = 5 4
9 x 7 = 6 3
9 x 8 = 7 2
9 x 9 = 8 1
9 x 10 = 9 0
Hoekberekening Sos, Cas Toa
Met hoekberekening heb je 2 formules waardoor je elke hoek kan berekenen
Sinus= overstaande: schuine
Tangens = overstaande : aanliggende
Cosinus= aanliggende : schuine
Als je daarnaast
5= 10 : 2 neerzet kan je alles berekenen.
assenstelsel
wanneer je vergeten bent of je eerst de y as of de x as moet doen ga je gewoon het alfabet af! eerst de x dan de y!
a b c d e f g h i j k l m n o p q r s t u v w x y z
zie je!
Goniometrie
Cosinus –> Cas : aanliggend / schuin
Sinus –> Sos: overstaand/ schuin
Tangens –> Toa: overstaand/aanliggend
Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)
SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)
SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.
Het verschil tussen modus en mediaan
Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.
Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal
Wiskundige vergelijking (x,y)
Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.
Grootheden
Om het verschil te onthouden tussen de grootheden van getallen; van laag naar hoog, kun je denken aan
Mijn Bil Trilt (2x)
Miljoen = 1.000.000
Miljard = 1.000.000.000
Biljoen = 1.000.000.000.000
Biljard = 1.000.000.000.000.000
Triljoen = 1.000.000.000.000.000.000
Triljard = 1.000.000.000.000.000.000.000
De verschillende vormen van een meter
Deze kun je onthouden met de zin
Kan Het Dametje Met De CM Meten
K m
H m
M
D m
CM
M m
Toa, Sos, Cas
Toa, Sos. Cas
Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine
Richtingscoëfficiënt
De formule voor de r.c. is Verticaal/Horizontaal
Om dit te onthouden, kun je denken aan VerHip
V erticaal /
H orizontaal
X en Y as
Y–> is lang (verticaal)
X–> is breed (horizontaal)
zo kan je onthouden welke lijn wat is in het assenstelsel
km-hm-dam-m-dm-cm-mm
kan het dametje met de centimeter meten
km=kan
hm=het
dam=dametje
m=met
dm=de
cm=centimeter
mm=meten
Formule voor Inhoud
Deze formule kun je onthouden aan de hand van de zin
Leuke BH met Inhoud
Inhoud = LxBxH.
Het verschil tussen convex en concaaf
Om dit verschil te onthouden, kun je denken aan het Franse ‘la cave’, wat kelder betekent. Een kelder is hol
Concaaf = hol
Convex = bol
Groter dan(<) en kleiner dan(>)
< heb je een grote opening en dat is groter dan > heb je een puntje dan is het kleiner dan
Factoren van 5 vermenigvuldigen
Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5
Bijvoorbeeld;
75×75 = 5625 –> 70×80= 5600 + 5×5=25 –> 5625
Driehoeken
Het snijpunt van de Middenloodlijnen in een driehoek is het middenpunt van een Omgeschreven cirkel. Het snijpunt van de Bissectrices in een driehoek is het middenpunt van een Ingeschreven cirkel.
Samen wordt dat MOBI
afgeleide van een breuk
als je de afgeleide van een breuk neemt gebruik dan:
NAT-TAN
————— (gedeelddoorstreep)
N²
NAT = Noemer x Afgeleide Teller
TAN = Teller x Afgeleide Noemer
N² = Noemer²
maaltafel 9
9×1=9
9×2=18
9×3=27
9×4=36
9×5=45
9×6=54
9×7=63
9×8=72
9×9=81
9×10=90
Dus als je goed kijkt komen er telkens bij de tientallen een bij, en bij de eenheden gaat er telkens een af.
Metriek stelsel
Krijgt Hij Dan Maar Drie Cakejes Mee?
K=Kilometer
H=Hectometer
D=Decameter
M=Meter
D=Decimeter
C=Centimeter
M=Millimeter
naast meter werkt het ook voor bijvoorbeeld liters
Het verschil tussen de teller en de noemer
Om te onthouden waar de teller en de noemer komen in een breuk, kun je denken aan T = T
Teller = Top
Romeinse cijfers
Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:
Ik verving Xaviers lekkere citroenen door meloenen:
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000