Wiskunde Archives - Ezelsbruggetje Spring naar content

Alle Ezelsbruggetjes

Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.

Driehoeken

Het snijpunt van de Middenloodlijnen in een driehoek is het middenpunt van een Omgeschreven cirkel. Het snijpunt van de Bissectrices in een driehoek is het middenpunt van een Ingeschreven cirkel.

Samen wordt dat MOBI

Door X.L.

Gradenhoeken

Een klok is rond en is 360 graden.
Ieder cijfer X 30 is het aantal graden dat hiermee correspondeert.

Voorbeeld: 3X90=45 graden

Door Falko

Berg of dalparabool

Als er een – voor de x staat, is het negatief dus 🙁 berg

Als er een plus staat is het positief dus 🙂 dal

Door Marit

Vlakke meetkunde

FOX-Z
F-hoeken zijn gelijk aan elkaar
O:Hoeken die in een cirkel van 360 graden staan vormen een volle hoek ( 4 x 90 )
X: overstaande hoeken zijn gelijk
-: Alle drie de hoeken van een driehoek passen op een rechte lijn: een gestrekte hoek van 180 graden
Z-hoeken zijn gelijk

Door Clara

Teller en Noemer

Als je moeite hebt met de quotientfunctie en dan welke ook alweer de noemer was en welke de teller:
de teller t(x) staat bovenaan, de Top dus t(x) Top
en zo volgt dat de noemer n(x) de onderste is.

Door Fenne

Bereik en domein

Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as

Door Dima

Tafel van 9

9 x 1 = 0 9
9 x 2 = 1 8
9 x 3 = 2 7
9 x 4 = 3 6
9 x 5 = 4 5
9 x 6 = 5 4
9 x 7 = 6 3
9 x 8 = 7 2
9 x 9 = 8 1
9 x 10 = 9 0

Door Hamza

Eenheden

Kale Harry Danst Met De Chinezen Mee

Kilometer
Hectameter
Decameter
Meter
Decimeter
Centimeter
Milimeter

Door Anoniem

Factoren van 5 vermenigvuldigen

Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5

Bijvoorbeeld;
75×75 = 5625 –>  70×80= 5600 + 5×5=25 –> 5625

Door Anne Heleen

Het verschil tussen de teller en de noemer

Om te onthouden waar de teller en de noemer komen in een breuk, kun je denken aan T = T

Teller = Top

Door Maartje

Wiskundige vergelijking (x,y)

Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.

Door Jordy

De verschillende vormen van een meter

Deze kun je onthouden met de zin 
Kan Het Dametje Met De CM Meten

K m
H m
M
D m
CM
M m

Door Esmee

Rekenvolgorde HMWVDOA

HMWVDOA = Hare Majesteit Wenst Vandaag De Open Auto
1. Haakjes
2. Machtsverheffen
3. Worteltrekken
4. Vermenigvuldigen
5. Delen
6. Optellen
7. Aftrekken

Door Gerard

Formule voor Inhoud

Deze formule kun je onthouden aan de hand van de zin
Leuke BH met Inhoud

Inhoud = LxBxH.

Door E.J.E.

Km² Km³

Bij km² dan moet er 2 nullen bij en bij km³ 3 nullen.

Door Anoniem

Groter dan(<) en kleiner dan(>)

< heb je een grote opening en dat is groter dan > heb je een puntje dan is het kleiner dan

Door Ryan

Binaire talstelsel

In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.

Door Jesse

Volgorde van berekeningen

Hoe Komen Wij Van Die Onvoldoendes Af?

Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken

Door Rianne

Hoekberekening Sos, Cas Toa

Met hoekberekening heb je 2 formules waardoor je elke hoek kan berekenen

Sinus= overstaande: schuine
Tangens = overstaande : aanliggende
Cosinus= aanliggende : schuine

Als je daarnaast
5= 10 : 2 neerzet kan je alles berekenen.

Door Alex

Wiskundige verbanden

Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM

W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden

Door Joyce

Romeinse cijfers

Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:

Ik verving Xaviers lekkere citroenen door meloenen:

I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000

Door Thomas

Toa, Sos, Cas

Toa, Sos. Cas

Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine

Door rosa

Differentiëren

Bij het differentiëren gebruik je de productregel, die kun je onthouden door te denken aan DOOD

D ifferentiëren *
O verschrijven +
O verschrijven * Differentiëren

Door Max

Omrekenen

Om te onthouden dat 1 kilo = 2 pond = 10 ons, kun je het volgende doen

Breng je handen samen (1 kilo), maak nu twee vuisten (2 pond), laat al jouw vingers zien (10 ons)

Door Mathilda

Het verschil tussen < en >

Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje

Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!

Door Anoniem

Het verschil tussen de omtrek en de oppervlakte

Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP

Omtrek = omheen lopen
Oppervlakte = op lopen

Door Jade

delen door 6

Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.

voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9

163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.

Door some
Home
Alle items
Uploaden