
Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
De eigenschappen van transformaties
Deze eigenschappen kun je onthouden met het acroniem AHOE
A anpassen
H oekgrootte
O mega
E enheid
Hoekberekening Sos, Cas Toa
Met hoekberekening heb je 2 formules waardoor je elke hoek kan berekenen
Sinus= overstaande: schuine
Tangens = overstaande : aanliggende
Cosinus= aanliggende : schuine
Als je daarnaast
5= 10 : 2 neerzet kan je alles berekenen.
Eenheden
Kale Harry Danst Met De Chinezen Mee
Kilometer
Hectameter
Decameter
Meter
Decimeter
Centimeter
Milimeter
De verschillende vormen van een meter
Deze kun je onthouden met de zin
Kan Het Dametje Met De CM Meten
K m
H m
M
D m
CM
M m
Berg- of dalparabool
Als je blij bent (dus positief) heb je een lachende mond (zelfde vorm als dalparabool). Als je verdrietig bent (dus negatief), heb je een droevige mond (zelfde vorm als bergparabool).
Gradenhoeken
Een klok is rond en is 360 graden.
Ieder cijfer X 30 is het aantal graden dat hiermee correspondeert.
Voorbeeld: 3X90=45 graden
Vlakke meetkunde
FOX-Z
F-hoeken zijn gelijk aan elkaar
O:Hoeken die in een cirkel van 360 graden staan vormen een volle hoek ( 4 x 90 )
X: overstaande hoeken zijn gelijk
-: Alle drie de hoeken van een driehoek passen op een rechte lijn: een gestrekte hoek van 180 graden
Z-hoeken zijn gelijk
Romeinse cijfers
Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:
Ik verving Xaviers lekkere citroenen door meloenen:
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
Diameter en straal
Het verschil tussen een diameter en een straal is soms lastig te onthouden. Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.
Toa, Sos, Cas
Toa, Sos. Cas
Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine
Driehoeken
Het snijpunt van de Middenloodlijnen in een driehoek is het middenpunt van een Omgeschreven cirkel. Het snijpunt van de Bissectrices in een driehoek is het middenpunt van een Ingeschreven cirkel.
Samen wordt dat MOBI
SCHERP OF STOMP GRADEN
Scherp= de buitenste en de scherpste strakste lijn
Stomp=de binnenste de ronde lijn.
Het verschil tussen convex en concaaf
Om dit verschil te onthouden, kun je denken aan het Franse ‘la cave’, wat kelder betekent. Een kelder is hol
Concaaf = hol
Convex = bol
X en Y as
Y–> is lang (verticaal)
X–> is breed (horizontaal)
zo kan je onthouden welke lijn wat is in het assenstelsel
Volgorde van berekeningen
Hoe Komen Wij Van Die Onvoldoendes Af?
Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken
Metriek stelsel
Krijgt Hij Dan Maar Drie Cakejes Mee?
K=Kilometer
H=Hectometer
D=Decameter
M=Meter
D=Decimeter
C=Centimeter
M=Millimeter
naast meter werkt het ook voor bijvoorbeeld liters
assenstelsel
wanneer je vergeten bent of je eerst de y as of de x as moet doen ga je gewoon het alfabet af! eerst de x dan de y!
a b c d e f g h i j k l m n o p q r s t u v w x y z
zie je!
Logaritmen en kwadraten
Welk getalletje uit een kwadraat zet je waar in het logaritme??
A^b=C
De uitkomst van het kwadraat moet altijd in de Log komen te staan.
Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)
Zo krijg je:
A^b=C -> ^ALog(C)=B
Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡
Bereik en domein
Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as
Groter dan(<) en kleiner dan(>)
< heb je een grote opening en dat is groter dan > heb je een puntje dan is het kleiner dan
Rekenkundige bewerkingen
Hoe Moeten We Van Die Onvoldoendes Afkomen?
H= Haakjes
M= Machtsverheffen
W= Worteltrekken
V= Vermenigvuldigen
D= Delen
O= Optellen
A= Aftrekken
km-hm-dam-m-dm-cm-mm
kan het dametje met de centimeter meten
km=kan
hm=het
dam=dametje
m=met
dm=de
cm=centimeter
mm=meten
Het verschil tussen modus en mediaan
Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.
Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal
Het verschil tussen de omtrek en de oppervlakte
Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP
Omtrek = omheen lopen
Oppervlakte = op lopen
Wiskundige verbanden
Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM
W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden
Het verschil tussen < en >
Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje
Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!
