
Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
Omrekenen
Om te onthouden dat 1 kilo = 2 pond = 10 ons, kun je het volgende doen
Breng je handen samen (1 kilo), maak nu twee vuisten (2 pond), laat al jouw vingers zien (10 ons)
Cirkel: omtrek of oppervlakte?
De omtrek is 2 x pi x r
De oppervlakte is pi x r²
Als er 1 r in voor komt, is het dus in meters en dus lengte. Als er r² in voor komt, is het vierkante meters, dus oppervlakte!
Driehoeken
Het snijpunt van de Middenloodlijnen in een driehoek is het middenpunt van een Omgeschreven cirkel. Het snijpunt van de Bissectrices in een driehoek is het middenpunt van een Ingeschreven cirkel.
Samen wordt dat MOBI
Volgorde van bewerkingen
Het Mannetje Won Van De Oude Aap
Het -> haakjes
Mannetje-> machten
Won-> worteltrekking
Van-> vermenigvuldig
De-> delen
Oude-> optellen
Aap-> aftrekken
Eenheden
Kale Harry Danst Met De Chinezen Mee
Kilometer
Hectameter
Decameter
Meter
Decimeter
Centimeter
Milimeter
Formule voor volume
Om de formule voor volume te onthouden, kun je denken aan de zin
VOLle LENGTE BRandt HOOG
Volume = lengte x breedte x hoogte
Het verschil tussen suppelementair en complementair
Om te onthouden hoeveel graden je draait bij supplementair en complementair, kun je denken aan de hoeveelheid P’s in het woord
SuPPlementair –> 2 p’s –> 180 graden draaien
ComPlementair –> 1 p –> 90 graden draaien
Tafel van 9
9 x 1 = 0 9
9 x 2 = 1 8
9 x 3 = 2 7
9 x 4 = 3 6
9 x 5 = 4 5
9 x 6 = 5 4
9 x 7 = 6 3
9 x 8 = 7 2
9 x 9 = 8 1
9 x 10 = 9 0
Factoren van 5 vermenigvuldigen
Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5
Bijvoorbeeld;
75×75 = 5625 –> 70×80= 5600 + 5×5=25 –> 5625
De verschillende vormen van een meter
Deze kun je onthouden met de zin
Kan Het Dametje Met De CM Meten
K m
H m
M
D m
CM
M m
delen door 6
Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.
voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9
163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.
km-hm-dam-m-dm-cm-mm
kan het dametje met de centimeter meten
km=kan
hm=het
dam=dametje
m=met
dm=de
cm=centimeter
mm=meten
Assenstelsel
Wanneer je vergeten bent of je eerst de verticale of eerst de horizontale lijn moet bekijken, kun je hieraan denken.
Eerst lopen en dan met de lift. Je bekijkt eerst de horizontale lijn en daarna de verticale lijn.
assenstelsel
wanneer je vergeten bent of je eerst de y as of de x as moet doen ga je gewoon het alfabet af! eerst de x dan de y!
a b c d e f g h i j k l m n o p q r s t u v w x y z
zie je!
Metriek stelsel
Km ~ kijk
Hm ~ hoe
Dm ~ dat
M ~ meisje
Dm ~ die
Cm ~ cirkel
Mm ~ maakt
Kijk hoe dat meisje die cirkel maakt!
Eenheden van de gram
Om de eenheden van de gram te onthouden, kun je denken aan de zin
Tankt Kees Gewoon Mee
T on
K ilogram
G ram
M iligram
Cijfers van pi
De precieze cijfers van pi kan je onthouden met de zin ‘Yes I want a pizza, yesterday we wanted pizza, yes pizza!
De hoeveelheid letters per woord staan voor een getal van pi. En het verhaal gaat nog over pizza ook!
Pi is dus: 3,1415926535
De eigenschappen van transformaties
Deze eigenschappen kun je onthouden met het acroniem AHOE
A anpassen
H oekgrootte
O mega
E enheid
Wiskundige verbanden
Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM
W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden
pi uitrekenen
may i have a large container of coffee beans
may 3
i 1
have 4
a 1
large 5
container 9
of 2
coffee 6
beans 5
3,14159265
Berg of dalparabool
Als er een – voor de x staat, is het negatief dus 🙁 berg
Als er een plus staat is het positief dus 🙂 dal
Volgorde van berekeningen
Hoe Komen Wij Van Die Onvoldoendes Af?
Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken
Wiskundige vergelijking (x,y)
Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.
Het verschil tussen < en >
Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje
Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!
Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)
SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)
SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.
Gradenhoeken
Een klok is rond en is 360 graden.
Ieder cijfer X 30 is het aantal graden dat hiermee correspondeert.
Voorbeeld: 3X90=45 graden
