
Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
Teller en Noemer
Als je moeite hebt met de quotientfunctie en dan welke ook alweer de noemer was en welke de teller:
de teller t(x) staat bovenaan, de Top dus t(x) Top
en zo volgt dat de noemer n(x) de onderste is.
Logaritmen en kwadraten
Welk getalletje uit een kwadraat zet je waar in het logaritme??
A^b=C
De uitkomst van het kwadraat moet altijd in de Log komen te staan.
Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)
Zo krijg je:
A^b=C -> ^ALog(C)=B
Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡
De eigenschappen van transformaties
Deze eigenschappen kun je onthouden met het acroniem AHOE
A anpassen
H oekgrootte
O mega
E enheid
afgeleide van een breuk
als je de afgeleide van een breuk neemt gebruik dan:
NAT-TAN
————— (gedeelddoorstreep)
N²
NAT = Noemer x Afgeleide Teller
TAN = Teller x Afgeleide Noemer
N² = Noemer²
Vlakke meetkunde
FOX-Z
F-hoeken zijn gelijk aan elkaar
O:Hoeken die in een cirkel van 360 graden staan vormen een volle hoek ( 4 x 90 )
X: overstaande hoeken zijn gelijk
-: Alle drie de hoeken van een driehoek passen op een rechte lijn: een gestrekte hoek van 180 graden
Z-hoeken zijn gelijk
Wiskundige vergelijking (x,y)
Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.
Diameter en straal
Het verschil tussen een diameter en een straal is soms lastig te onthouden. Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.
Rekenkundige bewerkingen
Hoe Moeten We Van Die Onvoldoendes Afkomen?
H= Haakjes
M= Machtsverheffen
W= Worteltrekken
V= Vermenigvuldigen
D= Delen
O= Optellen
A= Aftrekken
Het verschil tussen modus en mediaan
Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.
Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal
Binaire talstelsel
In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.
delen door 6
Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.
voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9
163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.
Eenheden
Kale Harry Danst Met De Chinezen Mee
Kilometer
Hectameter
Decameter
Meter
Decimeter
Centimeter
Milimeter
Het verschil tussen convex en concaaf
Om dit verschil te onthouden, kun je denken aan het Franse ‘la cave’, wat kelder betekent. Een kelder is hol
Concaaf = hol
Convex = bol
Differentiëren
Bij het differentiëren gebruik je de productregel, die kun je onthouden door te denken aan DOOD
D ifferentiëren *
O verschrijven +
O verschrijven * Differentiëren
Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)
SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)
SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.
Hoekberekening Sos, Cas Toa
Met hoekberekening heb je 2 formules waardoor je elke hoek kan berekenen
Sinus= overstaande: schuine
Tangens = overstaande : aanliggende
Cosinus= aanliggende : schuine
Als je daarnaast
5= 10 : 2 neerzet kan je alles berekenen.
Het verschil tussen de omtrek en de oppervlakte
Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP
Omtrek = omheen lopen
Oppervlakte = op lopen
Romeinse cijfers
Ik Vind Xylofoons Leuke, Coole, Dure Muziekinstrumenten.
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
Van Romeins cijfer vermenigvuldig je steeds om en om met 2 en met 5.
Het verschil tussen < en >
Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje
Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!
Assenstelsel
Wanneer je vergeten bent of je eerst de verticale of eerst de horizontale lijn moet bekijken, kun je hieraan denken.
Eerst lopen en dan met de lift. Je bekijkt eerst de horizontale lijn en daarna de verticale lijn.
Berg of dalparabool
Als er een – voor de x staat, is het negatief dus 🙁 berg
Als er een plus staat is het positief dus 🙂 dal
Toa, Sos, Cas
Toa, Sos. Cas
Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine
Bereik en domein
Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as
Wiskundige verbanden
Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM
W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden
