Wiskunde Archives - Ezelsbruggetje Spring naar content

Alle Ezelsbruggetjes

Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.

Logaritmen en kwadraten

Welk getalletje uit een kwadraat zet je waar in het logaritme??

A^b=C

De uitkomst van het kwadraat moet altijd in de Log komen te staan.

Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)

Zo krijg je:
A^b=C -> ^ALog(C)=B

Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡

Door Sandra

Gradenhoeken

Een klok is rond en is 360 graden.
Ieder cijfer X 30 is het aantal graden dat hiermee correspondeert.

Voorbeeld: 3X90=45 graden

Door Falko

Km² Km³

Bij km² dan moet er 2 nullen bij en bij km³ 3 nullen.

Door Anoniem

De komma

Om te onthouden wat er met de komma gebeurt bij vermenigvuldigen en delen, kun je denken aan
R = R en L = L

KeeR = Komma naar Rechts
DeLen = Komma naar Links

Door Wladimir

Het verschil tussen < en >

Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje

Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!

Door Anoniem

Berg- of dalparabool

Als je blij bent (dus positief) heb je een lachende mond (zelfde vorm als dalparabool). Als je verdrietig bent (dus negatief), heb je een droevige mond (zelfde vorm als bergparabool).

Door Denise

Bereik en domein

Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as

Door Dima

km-hm-dam-m-dm-cm-mm

kan het dametje met de centimeter meten
km=kan
hm=het
dam=dametje
m=met
dm=de
cm=centimeter
mm=meten

Door mel

Wiskundige verbanden

Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM

W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden

Door Joyce

Driehoeken

Het snijpunt van de Middenloodlijnen in een driehoek is het middenpunt van een Omgeschreven cirkel. Het snijpunt van de Bissectrices in een driehoek is het middenpunt van een Ingeschreven cirkel.

Samen wordt dat MOBI

Door X.L.

Het verschil tussen de omtrek en de oppervlakte

Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP

Omtrek = omheen lopen
Oppervlakte = op lopen

Door Jade

Assenstelsel

Wanneer je vergeten bent of je eerst de verticale of eerst de horizontale lijn moet bekijken, kun je hieraan denken.

Eerst lopen en dan met de lift. Je bekijkt eerst de horizontale lijn en daarna de verticale lijn.

Door Anoniem

Binaire talstelsel

In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.

Door Jesse

Factoren van 5 vermenigvuldigen

Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5

Bijvoorbeeld;
75×75 = 5625 –>  70×80= 5600 + 5×5=25 –> 5625

Door Anne Heleen

De eigenschappen van transformaties

Deze eigenschappen kun je onthouden met het acroniem AHOE

A anpassen

H oekgrootte

O mega

E enheid

Door emma

delen door 6

Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.

voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9

163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.

Door some

Tafel van 9

9 x 1 = 0 9
9 x 2 = 1 8
9 x 3 = 2 7
9 x 4 = 3 6
9 x 5 = 4 5
9 x 6 = 5 4
9 x 7 = 6 3
9 x 8 = 7 2
9 x 9 = 8 1
9 x 10 = 9 0

Door Hamza

Differentiëren

Bij het differentiëren gebruik je de productregel, die kun je onthouden door te denken aan DOOD

D ifferentiëren *
O verschrijven +
O verschrijven * Differentiëren

Door Max

afgeleide van een breuk

als je de afgeleide van een breuk neemt gebruik dan:

NAT-TAN
————— (gedeelddoorstreep)
N²

NAT = Noemer x Afgeleide Teller
TAN = Teller x Afgeleide Noemer
N² = Noemer²

Door Ramy

Metriek stelsel

Km ~ kijk
Hm ~ hoe
Dm ~ dat
M ~ meisje
Dm ~ die
Cm ~ cirkel
Mm ~ maakt

Kijk hoe dat meisje die cirkel maakt!

Door Paula

Grootheden

Om het verschil te onthouden tussen de grootheden van getallen; van laag naar hoog, kun je denken aan
Mijn Bil Trilt (2x)

Miljoen = 1.000.000

Miljard = 1.000.000.000

Biljoen = 1.000.000.000.000

Biljard = 1.000.000.000.000.000

Triljoen = 1.000.000.000.000.000.000
Triljard = 1.000.000.000.000.000.000.000

Door Martijn

Teller en Noemer

Als je moeite hebt met de quotientfunctie en dan welke ook alweer de noemer was en welke de teller:
de teller t(x) staat bovenaan, de Top dus t(x) Top
en zo volgt dat de noemer n(x) de onderste is.

Door Fenne

Romeinse cijfers

Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:

Ik verving Xaviers lekkere citroenen door meloenen:

I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000

Door Thomas

Bytes

Kabouters Met Grote Tenen

(kabouters) Kilo byte
(met) Mega byte
(grote) Giga byte
(tenen) Tera byte

Door jonathan

Volgorde van berekeningen

Hoe Komen Wij Van Die Onvoldoendes Af?

Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken

Door Rianne

Hoekberekening Sos, Cas Toa

Met hoekberekening heb je 2 formules waardoor je elke hoek kan berekenen

Sinus= overstaande: schuine
Tangens = overstaande : aanliggende
Cosinus= aanliggende : schuine

Als je daarnaast
5= 10 : 2 neerzet kan je alles berekenen.

Door Alex
Home
Alle items
Uploaden