Wiskunde Archives - Ezelsbruggetje Spring naar content

Alle Ezelsbruggetjes

Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.

Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)

SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)

SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.

Door Rens

Het verschil tussen < en >

Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje

Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!

Door Anoniem

Cijfers van pi

De precieze cijfers van pi kan je onthouden met de zin ‘Yes I want a pizza, yesterday we wanted pizza, yes pizza!
De hoeveelheid letters per woord staan voor een getal van pi. En het verhaal gaat nog over pizza ook!
Pi is dus: 3,1415926535

Door Henk

pi uitrekenen

may i have a large container of coffee beans
may 3
i 1
have 4
a 1
large 5
container 9
of 2
coffee 6
beans 5

3,14159265

Door joost

Wiskundige verbanden

Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM

W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden

Door Joyce

100×100=……

10×10+2 nullen

Door Floor

Berg of dalparabool

Als er een – voor de x staat, is het negatief dus 🙁 berg

Als er een plus staat is het positief dus 🙂 dal

Door Marit

Teller en Noemer

Als je moeite hebt met de quotientfunctie en dan welke ook alweer de noemer was en welke de teller:
de teller t(x) staat bovenaan, de Top dus t(x) Top
en zo volgt dat de noemer n(x) de onderste is.

Door Fenne

Rekenvolgorde HMWVDOA

HMWVDOA = Hare Majesteit Wenst Vandaag De Open Auto
1. Haakjes
2. Machtsverheffen
3. Worteltrekken
4. Vermenigvuldigen
5. Delen
6. Optellen
7. Aftrekken

Door Gerard

Het verschil tussen convex en concaaf

Om dit verschil te onthouden, kun je denken aan het Franse ‘la cave’, wat kelder betekent. Een kelder is hol

Concaaf = hol
Convex = bol

Door Dries

Grootheden

Om het verschil te onthouden tussen de grootheden van getallen; van laag naar hoog, kun je denken aan
Mijn Bil Trilt (2x)

Miljoen = 1.000.000

Miljard = 1.000.000.000

Biljoen = 1.000.000.000.000

Biljard = 1.000.000.000.000.000

Triljoen = 1.000.000.000.000.000.000
Triljard = 1.000.000.000.000.000.000.000

Door Martijn

Metriek stelsel

Km ~ kijk
Hm ~ hoe
Dm ~ dat
M ~ meisje
Dm ~ die
Cm ~ cirkel
Mm ~ maakt

Kijk hoe dat meisje die cirkel maakt!

Door Paula

Het verschil tussen suppelementair en complementair

Om te onthouden hoeveel graden je draait bij supplementair en complementair, kun je denken aan de hoeveelheid P’s in het woord

SuPPlementair –> 2 p’s –> 180 graden draaien
ComPlementair –> 1 p –> 90 graden draaien

Door Hilke

Gradenhoeken

Een klok is rond en is 360 graden.
Ieder cijfer X 30 is het aantal graden dat hiermee correspondeert.

Voorbeeld: 3X90=45 graden

Door Falko

Toa, Sos, Cas

Toa, Sos. Cas

Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine

Door rosa

Bytes

Kabouters Met Grote Tenen

(kabouters) Kilo byte
(met) Mega byte
(grote) Giga byte
(tenen) Tera byte

Door jonathan

De eigenschappen van transformaties

Deze eigenschappen kun je onthouden met het acroniem AHOE

A anpassen

H oekgrootte

O mega

E enheid

Door emma

Eenheden van de gram

Om de eenheden van de gram te onthouden, kun je denken aan de zin
Tankt Kees Gewoon Mee

T on
K ilogram
G ram
M iligram

Door mel

X en Y as

Y–> is lang (verticaal)
X–> is breed (horizontaal)

zo kan je onthouden welke lijn wat is in het assenstelsel

Door Liv

Volgorde van berekeningen

Hoe Komen Wij Van Die Onvoldoendes Af?

Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken

Door Rianne

maaltafel 9

9×1=9
9×2=18
9×3=27
9×4=36
9×5=45
9×6=54
9×7=63
9×8=72
9×9=81
9×10=90

Dus als je goed kijkt komen er telkens bij de tientallen een bij, en bij de eenheden gaat er telkens een af.

Door Nore

Groter dan(<) en kleiner dan(>)

< heb je een grote opening en dat is groter dan > heb je een puntje dan is het kleiner dan

Door Ryan

delen door 6

Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.

voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9

163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.

Door some

afgeleide van een breuk

als je de afgeleide van een breuk neemt gebruik dan:

NAT-TAN
————— (gedeelddoorstreep)

NAT = Noemer x Afgeleide Teller
TAN = Teller x Afgeleide Noemer
N² = Noemer²

Door Ramy

Het verschil tussen modus en mediaan

Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.

Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal

Door Onno

Differentiëren

Bij het differentiëren gebruik je de productregel, die kun je onthouden door te denken aan DOOD

D ifferentiëren *
O verschrijven +
O verschrijven * Differentiëren

Door Max

Formule voor Inhoud

Deze formule kun je onthouden aan de hand van de zin
Leuke BH met Inhoud

Inhoud = LxBxH.

Door E.J.E.

Factoren van 5 vermenigvuldigen

Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5

Bijvoorbeeld;
75×75 = 5625 –>  70×80= 5600 + 5×5=25 –> 5625

Door Anne Heleen
Home
Alle items
Uploaden