
Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
De eigenschappen van transformaties
Deze eigenschappen kun je onthouden met het acroniem AHOE
A anpassen
H oekgrootte
O mega
E enheid
De verschillende vormen van een meter
Deze kun je onthouden met de zin
Kan Het Dametje Met De CM Meten
K m
H m
M
D m
CM
M m
Rekenvolgorde HMWVDOA
HMWVDOA = Hare Majesteit Wenst Vandaag De Open Auto
1. Haakjes
2. Machtsverheffen
3. Worteltrekken
4. Vermenigvuldigen
5. Delen
6. Optellen
7. Aftrekken
Het verschil tussen suppelementair en complementair
Om te onthouden hoeveel graden je draait bij supplementair en complementair, kun je denken aan de hoeveelheid P’s in het woord
SuPPlementair –> 2 p’s –> 180 graden draaien
ComPlementair –> 1 p –> 90 graden draaien
Berg- of dalparabool
Als je blij bent (dus positief) heb je een lachende mond (zelfde vorm als dalparabool). Als je verdrietig bent (dus negatief), heb je een droevige mond (zelfde vorm als bergparabool).
Bereik en domein
Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as
Factoren van 5 vermenigvuldigen
Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5
Bijvoorbeeld;
75×75 = 5625 –> 70×80= 5600 + 5×5=25 –> 5625
Het verschil tussen de omtrek en de oppervlakte
Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP
Omtrek = omheen lopen
Oppervlakte = op lopen
Binaire talstelsel
In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.
Diameter en straal
Het verschil tussen een diameter en een straal is soms lastig te onthouden. Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.
Rekenkundige bewerkingen
Hoe Moeten We Van Die Onvoldoendes Afkomen?
H= Haakjes
M= Machtsverheffen
W= Worteltrekken
V= Vermenigvuldigen
D= Delen
O= Optellen
A= Aftrekken
Formule voor Inhoud
Deze formule kun je onthouden aan de hand van de zin
Leuke BH met Inhoud
Inhoud = LxBxH.
Romeinse cijfers
Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:
Ik verving Xaviers lekkere citroenen door meloenen:
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
Cijfers van pi
De precieze cijfers van pi kan je onthouden met de zin ‘Yes I want a pizza, yesterday we wanted pizza, yes pizza!
De hoeveelheid letters per woord staan voor een getal van pi. En het verhaal gaat nog over pizza ook!
Pi is dus: 3,1415926535
Het verschil tussen < en >
Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje
Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!
Wiskundige vergelijking (x,y)
Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.
Grootheden
Om het verschil te onthouden tussen de grootheden van getallen; van laag naar hoog, kun je denken aan
Mijn Bil Trilt (2x)
Miljoen = 1.000.000
Miljard = 1.000.000.000
Biljoen = 1.000.000.000.000
Biljard = 1.000.000.000.000.000
Triljoen = 1.000.000.000.000.000.000
Triljard = 1.000.000.000.000.000.000.000
Berg of dalparabool
Als er een – voor de x staat, is het negatief dus 🙁 berg
Als er een plus staat is het positief dus 🙂 dal
Wiskundige verbanden
Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM
W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden
Vlakke meetkunde
FOX-Z
F-hoeken zijn gelijk aan elkaar
O:Hoeken die in een cirkel van 360 graden staan vormen een volle hoek ( 4 x 90 )
X: overstaande hoeken zijn gelijk
-: Alle drie de hoeken van een driehoek passen op een rechte lijn: een gestrekte hoek van 180 graden
Z-hoeken zijn gelijk
afgeleide van een breuk
als je de afgeleide van een breuk neemt gebruik dan:
NAT-TAN
————— (gedeelddoorstreep)
N²
NAT = Noemer x Afgeleide Teller
TAN = Teller x Afgeleide Noemer
N² = Noemer²
X en Y as
Y–> is lang (verticaal)
X–> is breed (horizontaal)
zo kan je onthouden welke lijn wat is in het assenstelsel
Eenheden
Kale Harry Danst Met De Chinezen Mee
Kilometer
Hectameter
Decameter
Meter
Decimeter
Centimeter
Milimeter
Metriek stelsel
Krijgt Hij Dan Maar Drie Cakejes Mee?
K=Kilometer
H=Hectometer
D=Decameter
M=Meter
D=Decimeter
C=Centimeter
M=Millimeter
naast meter werkt het ook voor bijvoorbeeld liters
maaltafel 9
9×1=9
9×2=18
9×3=27
9×4=36
9×5=45
9×6=54
9×7=63
9×8=72
9×9=81
9×10=90
Dus als je goed kijkt komen er telkens bij de tientallen een bij, en bij de eenheden gaat er telkens een af.
Richtingscoëfficiënt
De formule voor de r.c. is Verticaal/Horizontaal
Om dit te onthouden, kun je denken aan VerHip
V erticaal /
H orizontaal
Omrekenen
Om te onthouden dat 1 kilo = 2 pond = 10 ons, kun je het volgende doen
Breng je handen samen (1 kilo), maak nu twee vuisten (2 pond), laat al jouw vingers zien (10 ons)
delen door 6
Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.
voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9
163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.
