
Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
Differentiëren
Bij het differentiëren gebruik je de productregel, die kun je onthouden door te denken aan DOOD
D ifferentiëren *
O verschrijven +
O verschrijven * Differentiëren
Tafel van 9
9 x 1 = 0 9
9 x 2 = 1 8
9 x 3 = 2 7
9 x 4 = 3 6
9 x 5 = 4 5
9 x 6 = 5 4
9 x 7 = 6 3
9 x 8 = 7 2
9 x 9 = 8 1
9 x 10 = 9 0
assenstelsel
wanneer je vergeten bent of je eerst de y as of de x as moet doen ga je gewoon het alfabet af! eerst de x dan de y!
a b c d e f g h i j k l m n o p q r s t u v w x y z
zie je!
Omrekenen
Om te onthouden dat 1 kilo = 2 pond = 10 ons, kun je het volgende doen
Breng je handen samen (1 kilo), maak nu twee vuisten (2 pond), laat al jouw vingers zien (10 ons)
delen door 6
Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.
voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9
163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.
Wiskundige verbanden
Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM
W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden
De komma
Om te onthouden wat er met de komma gebeurt bij vermenigvuldigen en delen, kun je denken aan
R = R en L = L
KeeR = Komma naar Rechts
DeLen = Komma naar Links
De verschillende vormen van een meter
Deze kun je onthouden met de zin
Kan Het Dametje Met De CM Meten
K m
H m
M
D m
CM
M m
Formule voor volume
Om de formule voor volume te onthouden, kun je denken aan de zin
VOLle LENGTE BRandt HOOG
Volume = lengte x breedte x hoogte
Het verschil tussen de teller en de noemer
Om te onthouden waar de teller en de noemer komen in een breuk, kun je denken aan T = T
Teller = Top
Romeinse cijfers
Ik Vind Xylofoons Leuke, Coole, Dure Muziekinstrumenten.
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
Van Romeins cijfer vermenigvuldig je steeds om en om met 2 en met 5.
Wiskundige vergelijking (x,y)
Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.
afgeleide van een breuk
als je de afgeleide van een breuk neemt gebruik dan:
NAT-TAN
————— (gedeelddoorstreep)
N²
NAT = Noemer x Afgeleide Teller
TAN = Teller x Afgeleide Noemer
N² = Noemer²
Toa, Sos, Cas
Toa, Sos. Cas
Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine
De vlakken van een vierkant
Deze kun je onthouden met ROBijnZoekers
R ibbe
O ndervlak
B ovenlak
Z ijvlak
Richtingscoëfficiënt
De formule voor de r.c. is Verticaal/Horizontaal
Om dit te onthouden, kun je denken aan VerHip
V erticaal /
H orizontaal
Logaritmen en kwadraten
Welk getalletje uit een kwadraat zet je waar in het logaritme??
A^b=C
De uitkomst van het kwadraat moet altijd in de Log komen te staan.
Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)
Zo krijg je:
A^b=C -> ^ALog(C)=B
Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡
Cijfers van pi
De precieze cijfers van pi kan je onthouden met de zin ‘Yes I want a pizza, yesterday we wanted pizza, yes pizza!
De hoeveelheid letters per woord staan voor een getal van pi. En het verhaal gaat nog over pizza ook!
Pi is dus: 3,1415926535
Rekenkundige bewerkingen
Hoe Moeten We Van Die Onvoldoendes Afkomen?
H= Haakjes
M= Machtsverheffen
W= Worteltrekken
V= Vermenigvuldigen
D= Delen
O= Optellen
A= Aftrekken
Vlakke meetkunde
FOX-Z
F-hoeken zijn gelijk aan elkaar
O:Hoeken die in een cirkel van 360 graden staan vormen een volle hoek ( 4 x 90 )
X: overstaande hoeken zijn gelijk
-: Alle drie de hoeken van een driehoek passen op een rechte lijn: een gestrekte hoek van 180 graden
Z-hoeken zijn gelijk
Bytes
Kabouters Met Grote Tenen
(kabouters) Kilo byte
(met) Mega byte
(grote) Giga byte
(tenen) Tera byte
De eigenschappen van transformaties
Deze eigenschappen kun je onthouden met het acroniem AHOE
A anpassen
H oekgrootte
O mega
E enheid
Diameter en straal
Het verschil tussen een diameter en een straal is soms lastig te onthouden. Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.
Grootheden
Om het verschil te onthouden tussen de grootheden van getallen; van laag naar hoog, kun je denken aan
Mijn Bil Trilt (2x)
Miljoen = 1.000.000
Miljard = 1.000.000.000
Biljoen = 1.000.000.000.000
Biljard = 1.000.000.000.000.000
Triljoen = 1.000.000.000.000.000.000
Triljard = 1.000.000.000.000.000.000.000
