
Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
Rekenkundige bewerkingen
Hoe Moeten We Van Die Onvoldoendes Afkomen?
H= Haakjes
M= Machtsverheffen
W= Worteltrekken
V= Vermenigvuldigen
D= Delen
O= Optellen
A= Aftrekken
Teller en Noemer
Als je moeite hebt met de quotientfunctie en dan welke ook alweer de noemer was en welke de teller:
de teller t(x) staat bovenaan, de Top dus t(x) Top
en zo volgt dat de noemer n(x) de onderste is.
Rekenvolgorde HMWVDOA
HMWVDOA = Hare Majesteit Wenst Vandaag De Open Auto
1. Haakjes
2. Machtsverheffen
3. Worteltrekken
4. Vermenigvuldigen
5. Delen
6. Optellen
7. Aftrekken
Grootheden
Om het verschil te onthouden tussen de grootheden van getallen; van laag naar hoog, kun je denken aan
Mijn Bil Trilt (2x)
Miljoen = 1.000.000
Miljard = 1.000.000.000
Biljoen = 1.000.000.000.000
Biljard = 1.000.000.000.000.000
Triljoen = 1.000.000.000.000.000.000
Triljard = 1.000.000.000.000.000.000.000
Richtingscoëfficiënt
De formule voor de r.c. is Verticaal/Horizontaal
Om dit te onthouden, kun je denken aan VerHip
V erticaal /
H orizontaal
Diameter en straal
Het verschil tussen een diameter en een straal is soms lastig te onthouden. Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.
De eigenschappen van transformaties
Deze eigenschappen kun je onthouden met het acroniem AHOE
A anpassen
H oekgrootte
O mega
E enheid
Romeinse cijfers
Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:
Ik verving Xaviers lekkere citroenen door meloenen:
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
Formule voor Inhoud
Deze formule kun je onthouden aan de hand van de zin
Leuke BH met Inhoud
Inhoud = LxBxH.
Het verschil tussen modus en mediaan
Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.
Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal
Volgorde van berekeningen
Hoe Komen Wij Van Die Onvoldoendes Af?
Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken
Metriek stelsel
Km ~ kijk
Hm ~ hoe
Dm ~ dat
M ~ meisje
Dm ~ die
Cm ~ cirkel
Mm ~ maakt
Kijk hoe dat meisje die cirkel maakt!
Eenheden van de gram
Om de eenheden van de gram te onthouden, kun je denken aan de zin
Tankt Kees Gewoon Mee
T on
K ilogram
G ram
M iligram
De vlakken van een vierkant
Deze kun je onthouden met ROBijnZoekers
R ibbe
O ndervlak
B ovenlak
Z ijvlak
Tafel van 9
9 x 1 = 0 9
9 x 2 = 1 8
9 x 3 = 2 7
9 x 4 = 3 6
9 x 5 = 4 5
9 x 6 = 5 4
9 x 7 = 6 3
9 x 8 = 7 2
9 x 9 = 8 1
9 x 10 = 9 0
Assenstelsel
Wanneer je vergeten bent of je eerst de verticale of eerst de horizontale lijn moet bekijken, kun je hieraan denken.
Eerst lopen en dan met de lift. Je bekijkt eerst de horizontale lijn en daarna de verticale lijn.
delen door 6
Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.
voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9
163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.
Logaritmen en kwadraten
Welk getalletje uit een kwadraat zet je waar in het logaritme??
A^b=C
De uitkomst van het kwadraat moet altijd in de Log komen te staan.
Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)
Zo krijg je:
A^b=C -> ^ALog(C)=B
Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡
Het verschil tussen de omtrek en de oppervlakte
Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP
Omtrek = omheen lopen
Oppervlakte = op lopen
Factoren van 5 vermenigvuldigen
Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5
Bijvoorbeeld;
75×75 = 5625 –> 70×80= 5600 + 5×5=25 –> 5625
Romeinse cijfers
Ik Vind Xylofoons Leuke, Coole, Dure Muziekinstrumenten.
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
Van Romeins cijfer vermenigvuldig je steeds om en om met 2 en met 5.
Het verschil tussen suppelementair en complementair
Om te onthouden hoeveel graden je draait bij supplementair en complementair, kun je denken aan de hoeveelheid P’s in het woord
SuPPlementair –> 2 p’s –> 180 graden draaien
ComPlementair –> 1 p –> 90 graden draaien
Omrekenen
Om te onthouden dat 1 kilo = 2 pond = 10 ons, kun je het volgende doen
Breng je handen samen (1 kilo), maak nu twee vuisten (2 pond), laat al jouw vingers zien (10 ons)
assenstelsel
wanneer je vergeten bent of je eerst de y as of de x as moet doen ga je gewoon het alfabet af! eerst de x dan de y!
a b c d e f g h i j k l m n o p q r s t u v w x y z
zie je!
Het verschil tussen < en >
Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje
Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!
De verschillende vormen van een meter
Deze kun je onthouden met de zin
Kan Het Dametje Met De CM Meten
K m
H m
M
D m
CM
M m
Groter dan(<) en kleiner dan(>)
< heb je een grote opening en dat is groter dan > heb je een puntje dan is het kleiner dan
