Wiskunde Archives - Ezelsbruggetje Spring naar content

Alle Ezelsbruggetjes

Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.

Driehoeken

Het snijpunt van de Middenloodlijnen in een driehoek is het middenpunt van een Omgeschreven cirkel. Het snijpunt van de Bissectrices in een driehoek is het middenpunt van een Ingeschreven cirkel.

Samen wordt dat MOBI

Door X.L.

Grootheden

Om het verschil te onthouden tussen de grootheden van getallen; van laag naar hoog, kun je denken aan
Mijn Bil Trilt (2x)

Miljoen = 1.000.000

Miljard = 1.000.000.000

Biljoen = 1.000.000.000.000

Biljard = 1.000.000.000.000.000

Triljoen = 1.000.000.000.000.000.000
Triljard = 1.000.000.000.000.000.000.000

Door Martijn

Logaritmen en kwadraten

Welk getalletje uit een kwadraat zet je waar in het logaritme??

A^b=C

De uitkomst van het kwadraat moet altijd in de Log komen te staan.

Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)

Zo krijg je:
A^b=C -> ^ALog(C)=B

Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡

Door Sandra

Tafel van 9

9 x 1 = 0 9
9 x 2 = 1 8
9 x 3 = 2 7
9 x 4 = 3 6
9 x 5 = 4 5
9 x 6 = 5 4
9 x 7 = 6 3
9 x 8 = 7 2
9 x 9 = 8 1
9 x 10 = 9 0

Door Hamza

Omrekenen

Om te onthouden dat 1 kilo = 2 pond = 10 ons, kun je het volgende doen

Breng je handen samen (1 kilo), maak nu twee vuisten (2 pond), laat al jouw vingers zien (10 ons)

Door Mathilda

Het verschil tussen modus en mediaan

Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.

Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal

Door Onno

Het verschil tussen < en >

Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje

Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!

Door Anoniem

Assenstelsel

Wanneer je vergeten bent of je eerst de verticale of eerst de horizontale lijn moet bekijken, kun je hieraan denken.

Eerst lopen en dan met de lift. Je bekijkt eerst de horizontale lijn en daarna de verticale lijn.

Door Anoniem

Volgorde van berekeningen

Hoe Komen Wij Van Die Onvoldoendes Af?

Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken

Door Rianne

Bereik en domein

Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as

Door Dima

delen door 6

Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.

voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9

163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.

Door some

X en Y as

Y–> is lang (verticaal)
X–> is breed (horizontaal)

zo kan je onthouden welke lijn wat is in het assenstelsel

Door Liv

De verschillende vormen van een meter

Deze kun je onthouden met de zin 
Kan Het Dametje Met De CM Meten

K m
H m
M
D m
CM
M m

Door Esmee

maaltafel 9

9×1=9
9×2=18
9×3=27
9×4=36
9×5=45
9×6=54
9×7=63
9×8=72
9×9=81
9×10=90

Dus als je goed kijkt komen er telkens bij de tientallen een bij, en bij de eenheden gaat er telkens een af.

Door Nore

Diameter en straal

Het verschil tussen een diameter en een straal is soms lastig te onthouden.  Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.

Door Anoniem

Volgorde van bewerkingen

Het Mannetje Won Van De Oude Aap

Het -> haakjes

Mannetje-> machten
Won-> worteltrekking

Van-> vermenigvuldig
De-> delen

Oude-> optellen
Aap-> aftrekken

Door Ilisa

Romeinse cijfers

Ik Vind Xylofoons Leuke, Coole, Dure Muziekinstrumenten.
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
Van Romeins cijfer vermenigvuldig je steeds om en om met 2 en met 5.

Door anoniem

Het verschil tussen de teller en de noemer

Om te onthouden waar de teller en de noemer komen in een breuk, kun je denken aan T = T

Teller = Top

Door Maartje

Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)

SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)

SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.

Door Rens

pi uitrekenen

may i have a large container of coffee beans
may 3
i 1
have 4
a 1
large 5
container 9
of 2
coffee 6
beans 5

3,14159265

Door joost

Factoren van 5 vermenigvuldigen

Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5

Bijvoorbeeld;
75×75 = 5625 –>  70×80= 5600 + 5×5=25 –> 5625

Door Anne Heleen

Km² Km³

Bij km² dan moet er 2 nullen bij en bij km³ 3 nullen.

Door Anoniem

Richtingscoëfficiënt

De formule voor de r.c. is Verticaal/Horizontaal

Om dit te onthouden, kun je denken aan VerHip

V erticaal /
H orizontaal

Door Colin

De komma

Om te onthouden wat er met de komma gebeurt bij vermenigvuldigen en delen, kun je denken aan
R = R en L = L

KeeR = Komma naar Rechts
DeLen = Komma naar Links

Door Wladimir

Het verschil tussen de omtrek en de oppervlakte

Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP

Omtrek = omheen lopen
Oppervlakte = op lopen

Door Jade

Toa, Sos, Cas

Toa, Sos. Cas

Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine

Door rosa

Costa Rica!

Weet je nou nooit in de eenheidscirkel of de cosinus nou op de X-as ligt of op de Y-as? Nu vergeet je het nooit meer:

COSta Rica, zand, zee, horizon, dus die ligt op de X-as.

Sinus ligt dan op de Y natuurlijk 😎

Door Binc

Binaire talstelsel

In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.

Door Jesse

Bytes

Kabouters Met Grote Tenen

(kabouters) Kilo byte
(met) Mega byte
(grote) Giga byte
(tenen) Tera byte

Door jonathan
Home
Alle items
Uploaden