Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
Bytes
Kabouters Met Grote Tenen
(kabouters) Kilo byte
(met) Mega byte
(grote) Giga byte
(tenen) Tera byte
Bereik en domein
Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as
maaltafel 9
9×1=9
9×2=18
9×3=27
9×4=36
9×5=45
9×6=54
9×7=63
9×8=72
9×9=81
9×10=90
Dus als je goed kijkt komen er telkens bij de tientallen een bij, en bij de eenheden gaat er telkens een af.
km-hm-dam-m-dm-cm-mm
kan het dametje met de centimeter meten
km=kan
hm=het
dam=dametje
m=met
dm=de
cm=centimeter
mm=meten
Berg- of dalparabool
Als je blij bent (dus positief) heb je een lachende mond (zelfde vorm als dalparabool). Als je verdrietig bent (dus negatief), heb je een droevige mond (zelfde vorm als bergparabool).
assenstelsel
wanneer je vergeten bent of je eerst de y as of de x as moet doen ga je gewoon het alfabet af! eerst de x dan de y!
a b c d e f g h i j k l m n o p q r s t u v w x y z
zie je!
Romeinse cijfers
Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:
Ik verving Xaviers lekkere citroenen door meloenen:
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
Groter dan(<) en kleiner dan(>)
< heb je een grote opening en dat is groter dan > heb je een puntje dan is het kleiner dan
afgeleide van een breuk
als je de afgeleide van een breuk neemt gebruik dan:
NAT-TAN
————— (gedeelddoorstreep)
N²
NAT = Noemer x Afgeleide Teller
TAN = Teller x Afgeleide Noemer
N² = Noemer²
Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)
SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)
SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.
Hoekberekening Sos, Cas Toa
Met hoekberekening heb je 2 formules waardoor je elke hoek kan berekenen
Sinus= overstaande: schuine
Tangens = overstaande : aanliggende
Cosinus= aanliggende : schuine
Als je daarnaast
5= 10 : 2 neerzet kan je alles berekenen.
De vlakken van een vierkant
Deze kun je onthouden met ROBijnZoekers
R ibbe
O ndervlak
B ovenlak
Z ijvlak
Wiskundige verbanden
Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM
W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden
Eenheden
Kale Harry Danst Met De Chinezen Mee
Kilometer
Hectameter
Decameter
Meter
Decimeter
Centimeter
Milimeter
Vlakke meetkunde
FOX-Z
F-hoeken zijn gelijk aan elkaar
O:Hoeken die in een cirkel van 360 graden staan vormen een volle hoek ( 4 x 90 )
X: overstaande hoeken zijn gelijk
-: Alle drie de hoeken van een driehoek passen op een rechte lijn: een gestrekte hoek van 180 graden
Z-hoeken zijn gelijk
Costa Rica!
Weet je nou nooit in de eenheidscirkel of de cosinus nou op de X-as ligt of op de Y-as? Nu vergeet je het nooit meer:
COSta Rica, zand, zee, horizon, dus die ligt op de X-as.
Sinus ligt dan op de Y natuurlijk 😎
Rekenvolgorde HMWVDOA
HMWVDOA = Hare Majesteit Wenst Vandaag De Open Auto
1. Haakjes
2. Machtsverheffen
3. Worteltrekken
4. Vermenigvuldigen
5. Delen
6. Optellen
7. Aftrekken
Het verschil tussen de omtrek en de oppervlakte
Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP
Omtrek = omheen lopen
Oppervlakte = op lopen
Het verschil tussen de teller en de noemer
Om te onthouden waar de teller en de noemer komen in een breuk, kun je denken aan T = T
Teller = Top
Metriek stelsel
Km ~ kijk
Hm ~ hoe
Dm ~ dat
M ~ meisje
Dm ~ die
Cm ~ cirkel
Mm ~ maakt
Kijk hoe dat meisje die cirkel maakt!
Factoren van 5 vermenigvuldigen
Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5
Bijvoorbeeld;
75×75 = 5625 –> 70×80= 5600 + 5×5=25 –> 5625
Eenheden van de gram
Om de eenheden van de gram te onthouden, kun je denken aan de zin
Tankt Kees Gewoon Mee
T on
K ilogram
G ram
M iligram
Het verschil tussen suppelementair en complementair
Om te onthouden hoeveel graden je draait bij supplementair en complementair, kun je denken aan de hoeveelheid P’s in het woord
SuPPlementair –> 2 p’s –> 180 graden draaien
ComPlementair –> 1 p –> 90 graden draaien
Het verschil tussen convex en concaaf
Om dit verschil te onthouden, kun je denken aan het Franse ‘la cave’, wat kelder betekent. Een kelder is hol
Concaaf = hol
Convex = bol
Logaritmen en kwadraten
Welk getalletje uit een kwadraat zet je waar in het logaritme??
A^b=C
De uitkomst van het kwadraat moet altijd in de Log komen te staan.
Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)
Zo krijg je:
A^b=C -> ^ALog(C)=B
Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡
Assenstelsel
Wanneer je vergeten bent of je eerst de verticale of eerst de horizontale lijn moet bekijken, kun je hieraan denken.
Eerst lopen en dan met de lift. Je bekijkt eerst de horizontale lijn en daarna de verticale lijn.