Wiskunde Archives - Ezelsbruggetje Spring naar content

Alle Ezelsbruggetjes

Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.

delen door 6

Snel of een groot getal door 3 of 9 deelbaar is, tel dan alle cijfers steeds bij elkaar op totdat je een 1-cijferig getal overhoudt. Is dat getal deelbaar door of 9 dan is het grote getal dat ook.

voorbeeld:
418617 deelbaar door 9?
4+1+8+6+1+7=27
2+7=9
418617 is dus deelbaar door 9

163536 deelbaar door 9 en 3?
1+6+3+5+3+6=24
2+4=6
6 is niet deelbaar door 9, maar wel door 3, dus 163536 is wel deelbaar door 3 maar niet door 9.

Door some

Km² Km³

Bij km² dan moet er 2 nullen bij en bij km³ 3 nullen.

Door Anoniem

Goniometrie

Cosinus –> Cas : aanliggend / schuin
Sinus –> Sos: overstaand/ schuin
Tangens –> Toa: overstaand/aanliggend

Door andrea

Cijfers van pi

De precieze cijfers van pi kan je onthouden met de zin ‘Yes I want a pizza, yesterday we wanted pizza, yes pizza!
De hoeveelheid letters per woord staan voor een getal van pi. En het verhaal gaat nog over pizza ook!
Pi is dus: 3,1415926535

Door Henk

Toa, Sos, Cas

Toa, Sos. Cas

Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine

Door rosa

Wiskundige verbanden

Om de verschillende wiskundige verbanden te onthouden, kun je denken aan WELKOM

W ortelverbanden
E xponentiële verbanden
L ineaire verbanden
K wadratische verbanden
O mgekeerd evenredige verbanden
M achtsverbanden

Door Joyce

Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)

SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)

SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.

Door Rens

Het verschil tussen convex en concaaf

Om dit verschil te onthouden, kun je denken aan het Franse ‘la cave’, wat kelder betekent. Een kelder is hol

Concaaf = hol
Convex = bol

Door Dries

Teller en Noemer

Als je moeite hebt met de quotientfunctie en dan welke ook alweer de noemer was en welke de teller:
de teller t(x) staat bovenaan, de Top dus t(x) Top
en zo volgt dat de noemer n(x) de onderste is.

Door Fenne

pi uitrekenen

may i have a large container of coffee beans
may 3
i 1
have 4
a 1
large 5
container 9
of 2
coffee 6
beans 5

3,14159265

Door joost

Het verschil tussen modus en mediaan

Om het verschil tussen modus en mediaan te onthouden, kun je denken aan ‘mode’ wat terugkomt in modus. Mode behelst de kleren die op dat moment het meest worden gedragen.

Modus = Het waarnemingsgetal dat het meest voorkomt
Mediaan = het middelste waarnemingsgetal

Door Onno

delen door 0

delen door 0 is flauwekul

Door Astrid

Cirkel: omtrek of oppervlakte?

De omtrek is 2 x pi x r
De oppervlakte is pi x r²

Als er 1 r in voor komt, is het dus in meters en dus lengte. Als er r² in voor komt, is het vierkante meters, dus oppervlakte!

Door Rob

Formule voor volume

Om de formule voor volume te onthouden, kun je denken aan de zin
VOLle LENGTE BRandt HOOG

Volume = lengte x breedte x hoogte

Door Ilisa

km-hm-dam-m-dm-cm-mm

kan het dametje met de centimeter meten
km=kan
hm=het
dam=dametje
m=met
dm=de
cm=centimeter
mm=meten

Door mel

assenstelsel

wanneer je vergeten bent of je eerst de y as of de x as moet doen ga je gewoon het alfabet af! eerst de x dan de y!

a b c d e f g h i j k l m n o p q r s t u v w x y z
zie je!

Door Anoniem

Assenstelsel

Wanneer je vergeten bent of je eerst de verticale of eerst de horizontale lijn moet bekijken, kun je hieraan denken.

Eerst lopen en dan met de lift. Je bekijkt eerst de horizontale lijn en daarna de verticale lijn.

Door Anoniem

Differentiëren

Bij het differentiëren gebruik je de productregel, die kun je onthouden door te denken aan DOOD

D ifferentiëren *
O verschrijven +
O verschrijven * Differentiëren

Door Max

Bereik en domein

Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as

Door Dima

Het verschil tussen suppelementair en complementair

Om te onthouden hoeveel graden je draait bij supplementair en complementair, kun je denken aan de hoeveelheid P’s in het woord

SuPPlementair –> 2 p’s –> 180 graden draaien
ComPlementair –> 1 p –> 90 graden draaien

Door Hilke

Bytes

Kabouters Met Grote Tenen

(kabouters) Kilo byte
(met) Mega byte
(grote) Giga byte
(tenen) Tera byte

Door jonathan

Binaire talstelsel

In het binaire talstel zitten maar twee cijfers. (0,1) Dit is te onthouden doordat de ‘b’ van binair de tweede letter in het alfabet is.

Door Jesse

SCHERP OF STOMP GRADEN

Scherp= de buitenste en de scherpste strakste lijn

Stomp=de binnenste de ronde lijn.

Door Anna

Volgorde van berekeningen

Hoe Komen Wij Van Die Onvoldoendes Af?

Elke eerste letter telt voor een stap
H: haakjes
K: kwadrateren ( Machtsverheffen)
W: worteltrekken
V: vermenigvuldigen
D: delen
O: optellen
A: aftrekken

Door Rianne

Romeinse cijfers

Een gemakkelijk ezelsbruggetje om de volgorde van Romeinse cijfers te onthouden:

Ik verving Xaviers lekkere citroenen door meloenen:

I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000

Door Thomas

Het verschil tussen de teller en de noemer

Om te onthouden waar de teller en de noemer komen in een breuk, kun je denken aan T = T

Teller = Top

Door Maartje
Home
Alle items
Uploaden